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Actual vs. Predicted El Niino Induced Erosion Scarp Locations in northwest
Oregon and southwest Washington

Richard C. Daniels, GISP, Washington State Department of Transportation danielri@wsdot.wa.gov
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The El Nifio event of 2015-2016 was one of the strongest El Nifio’s to occur in the last 33 years ——— Leeward Side
in the Pacific Northwest — second only to the 1983 and 1997 events. All three events were P P—— ) _—
1 1 c and falls or i 8 / : \
associated with elevated water levels along the northwest Oregon and southwest Washington e = . fer S
. . . . . . Average High Water Line (AHWL) Erosion Reference Feature (ERF) down slipface o G 7 cru il o :A e i -IS . reas —
coast resulting in increased erosion and scarping. In a study completed in 2016 we used sea Mid-Beach CL S \ S 2 - i G 5
surface temperature, precipitation anomalies, observed hourly tide levels and the Hedges Foreshore C adkehore @ DN B — o e o S Pes i i 15 B " s enereie o) >.
- - - . e . Pt ¢ é o Kilohlatr | —— 2014 Shoreline (OR) : b (2 OO a0 1| —— 2015 shoreline (WA
and Mase (2004) Run-Up model (using Regional average parameters) to identify coastal - o 5 el L s ] = . Kilometers | """ | - = X
. . . .~ sigEREange L TR UlideRange TS T oy~ L : R i daiins e WIS M e b <
beaches at risk to increased erosion by the El Nifio event. ®
Open Water Beach Toe of Dune Scarp Location Swale g
In this study LIDAR data published by NOAA's Ocean Service for July 2014 and April 2016 are & e — P " ©
: : : : : . ' L WY T e Q
used to identify beaches that actually experienced scarping during the 2014-2016 El Nino. To , , , , , , , , S 1 P
. . A | High Risk Areas | High Risk Areas
accomplish this | developed several GIS based models to extract scarps from the LIDAR data Beach Width B Ayt , B, e e 13
. . . . 41.1 o 35 meters ; §E 8 Moderate Risk (47 to 25 meters ) |
and compare them with the predicted ‘at risk’ locations and conducted an accuracy . : : : : | — e mets =N e  lanEehie bl -
, . . . o . Beach widths were derived from National Agriculture Imagery Program (NAIP) orthophotography flown on August 16, 3  lometara| — 215 stoenemw | b | s o =
assessment. The risk analysis and run-up model were rerun using site specific mid-beach 2015 for Washington and June 22, 2014 for Oregon. The average high water line (AHWL) and erosion reference feature | STt e
slopes extracted from the 2016 LIDAR for each transect. In general | found that the model (ERF), represented by the transition zone where vegetation no longer covers more than 50% of the ground (in areas = ut: 3 S et =
. . . . . . . . . 3 . " i T T————— f:(%m( €€ R e — (€ G (S o O g %)
based on Regional parameters provided a good first order estimate of risk, but that it under where the vegetation line is not visible the ERF will be the top edge of the cliff, bluff/scarp, or top center of the seaward = i = O e iR e S T ;
ot ghc c . \ \ =
predicted the total number of transects that were subject to erosion from El Nifio. The under most du-ne), were digitized and L.Jsed to create an envelope.or polygon. This envelope was uged to C|I!O the transects ,\\\ . _\\\ | 3
_— : : : o created in DSAS. The length attribute for each of the resulting transects was now the approximate width of the O 7
prediction was primarily due to: (1) the use of a mean mid-beach slope of 3% vs. the generally . : . i K | - ‘
. T _ . . . backshore —that portion of the beach only affected by waves during exceptional high tides or severe storms. ™ High Risk Areas High Risk Areas =
lower site specific slopes derived from the LIDAR data, (2) not including the +0.093 m tide o . y ko o wan <=z e =
: g O e, g Ted s S ) ATk toEh meters il Moderate Risk ( 47 to 25 meters ) ;)
. c _ . . . p c‘% [ A : 2 f4 > 95 meters £ ®  LownRisk (> 47 meters ) =7 § I
anomaly in the horizontal run-up calculations, and (3) an improved estimate off the Mid-Beach Slopes and Scarps R T NN et o g b bl e N
deepwater significant wave height of 2.07 vs. 1.97 m. The new analysis obtained run-ups that The 1 x 1 meter bare earth LIDAR DEM’s used for this study was obtained from by NOAA’s Coastal Zone Mapping and L — AT 3 S IEa i A Dyt~ o it 45 T
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K2 is for a beach slope of 1.8% with a mean sediment size of 0.2 mm. g
Ho and H;s is deepwater significant wave height; Lo is the deepwater waver period; Sis the deepwater ’ 03 08 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 08 : _ - ) / _
Iribarren number; and tan B is the beach slope. Mid Beach Slope (Degrees) I : : : . — Sk : : : — : : Tm"m Resu Its
Scarp Recovery after five days with Sun, no rain, and onshore winds (10-15 mph) in Ocean Shores, WA g;;o:w; - B
nalyst Tools ope P
(Photo location 1 mile north of Grays Harbor North Jetty; scarps 1.8 to 2 m high) oy The vulnerability of the northwest Oregon and southwest Washington ocean coast to
artography Tools . .
@ Conversion Tools coastal erosion was calculated for 1,420 shore perpendicular transects located 100 m apart
Correlation analysis of the Hedges and Mase (2004) equation with three other popular models obtained a R? Tides and Water Levels B ot ding for the 2015-2016 Nifio event. The transects were created using the USGS Digital Shoreline
o o o o o 0 0 o 0 9/0 s . J . . A “\ -. =] a Run Up Calculatiorj Tools . y . . . L - .
of 0.91.or better for beaches with slopes of 0.3% to 9.8'A>..Th|s indicates that with a appropriate site-specific Hourly Tide elevation data from NOAAs National Ocean Services Station 9440910 Toke Point, WA were analyzed for the e e 1 Cre i Sope S s o LOAR 06 Analysis System (Thieler et al. 2009). In this region major El Nifio events are associated with
correction factor (e.g., K2) these models will produce similar results. Shand et al. (2011) found Hedges and period 1981 to 2018. This station was selected because of its long period of continues record and its located at the — e 1 CrseSnp ot o EM Gt region-wide beach recession, dune scarping, and episodic coastal flooding during the
SHERE (2004) e be the gLe IR mOdEI_ Overa” fOf' IOW SIOpe beaCheS' because Of thIS the Hedges and apprOXimate center Of the StUdy area. MiSSing data pOintS in the station record were eStimated based on Iinear LIDAR Slope Difference - 2014 to 2016 LIDAR Derived Scarps - New in 2016 LIDAR Derived Mid-Beach Slope for each Transect ig:::'::?z:::ricr:;ti:3m'0"91 Weeks leadlng 5 Lo and after the Winter SOIStlce.
Mase (2004) equation was selected for use in this study. correlation equations derived for adjacent gauges (9439040 Astoria, OR and 9439011 Hammond, OR). wlll-.. o = 40, g L casomrarome
| ? r == / A R e v ap\ D ot o et 50  During Fall-Winter of the 2015-2016 El Nifio the number of hours were the observed
References Anomaly: Fall-Winter Tide > Predicted . l "}‘\\ o oo B o o e e 01 tide exceeded the predicted tide and mean high water was 197 hours (276 hours 1982-
Carrigy, M.A. 1973. Experiments on the angles of repose of granular materials. Sedimentology (14) 4:147-158. | Fall-Winter: Tide Mean Difference from Predicted (m) x'\ j ' _E B e oo Elf:::i‘:'f:’:'-‘mmm %?'ccjlcﬁzeuoi?Litf;z:;:e?fsl'ufpofing Model) 1983;387 hours 1996-1997); the mean tide elevation was +0.093 m above predicted.
300000 . \ : 4 I Lo 76,855 is‘ui Qand:a Maxir:::-.f;:;:;:m 7. Classify Run-Up Risk |
0.25 Gt
Ch N.S. and K. Zhao. 2017. Diff bet tatic and d i le of f unif diment grains. International J | of A ooo00- e : : :
Sejir:fént Reasr;arch (3232(; 2,149_15'4erence ik S QU U Tl Al S g i Cghlin S Sl ST S S S el S /\ . l \ ;. . A \ ' L e Analysis of Wave Height and Period data for 2009-2017 from the Grays Harbor, WA and
: \ A /\J \ /\/\ /\ /% . A | | Astoria, OR CDIP Buoy obtained a Significant Wave Height (Hs) of 2.07 m and Deep
Daniels, R.C. 2016. Impacts of the 2015-2016 El Nifio on Coastal Oregon and Washington. Annual Meeting of the Association of American %%%%ﬁ%%%ﬁ%?\?%%%%% g §§§§§%§%§'\é§§ﬁé§§ | A Water period of 7.40 sec. This is higher than the previously accepted Regional average
Geographers. San Francisco, California. N V ‘\/"" o of 1.97 m and 7.44 sec. (Daniels 2016).
200000+ 0.05
Fiedler, J.W., Smit, P.B., Brodie, K.L., McNich, J. and R.T. Guza. 2018. Numerical modeling of wave runup on steep and mildly sloping natural Mean = -473 Hours ]
beaches. Coastal Engineering (131) 1:106-113. e  The mean beach slope for the study area, derived from the 2016 LIDAR slope raster, was
Anomaly: Fall-Winter Tide > MHW o0 | 1.8% with a standard deviation of 3.12%. This is lower than the previously used Regional
Hedges, T.S. and H. Mase. 2004. Modified Hunt’s equation incorporating wave set-up. Journal of Waterways, Port, Coastal and Ocean e average of 3%
. . [ , 40000 -Ol : .
Engineering (130) 3:109-113. If\\ - e o e mises | (AR
-0.15 0 . . “« ”
Holman, R.A. 1986. Extreme value statistics for wave run-up on a natural beach. Coastal Engineering (9) 6:527-544. /A A 3 3 £ 38 8§ 3 &8 28838883 = B W ; e Analysis of the 2014 and 2016 LIDAR data derived a location dataset of “New Scarps”,
e - R - B - - B Y RN I O R O O O SR AR 1a. Create Maximum Slope/Scarp Rasters fram LIDAR DEM - O X P V‘S'SZ:::S:"KUDARDEM . “ ” . .
. . . a [V N S 2 B8 5 3 32 2% 2 3228832 33 . 1o Croe s sipoioaproce. S A were “New” means a scarp was present in 2016 but not in 2014. Of the 1420 transects
Ruggiero, P., Komar, P.D., McDougal, W.G., Marra, J.J. and R.A. Beach. 2001. Wave run-up, extreme water levels and the erosion of properties T e W smbe e Ao mom s e e 4 &3 4 &9 & 4 4 4 4 4 & & 8 & 8 8«8 8 o« ) | | @ from LIDAR DEM in the study area 905 (64%) had identifiable scarping.
backlng beaches_ Journal Of Coastal Research (17) 2:407_419. EERAG S TR ﬂﬁlgwﬂ $98¢ aﬁﬁﬁ%g’%ﬁ | Mgﬁlgn%% —Tide Mean Difference from Predicted (m) A Significant El Nino Event iﬂeighborhoodeeardn{e.g.,3x3cells) | = Calculate maximum degree slope within a 3 by 3 cell area.
3 With LIDAR DEM's the cell size is USUAIlY 1x 1 mster.
o600 ¥ Degree Slope Raster (Output) This is saved to the Slope Raster. The Slope Raster is then 3 . epe o . . . . .
Shand, R.D., Shand, T.D., McComb, P.J. and D.L. Johnson. 2011. Evaluation of empirical predictors of extreme run-up using field data. In 20th Mean = 1041 Hours . JLUmmScmpRm{mmm B e e e e e Using site specific information resulted in improved run-up calculations. On average, this
Australasian Coastal and Ocean Engineering Conference. Perth Australia. — — — — — — — | B f'h”"a:ut”l‘;ffih;s”ﬁ”’r“m"c;th@‘gd'u; resulted in horizontal run-up’s that were 20 m higher than originally predicted at transects
i i ’ i i : i - 2| voving scarps tha are facing he ‘wrong drection (e. with mid-beach slopes < 3% and run-ups 10 m lower than originally estimated on transects
Stockdon, H.F., Holman, R.A., Howard, P.A. and A.H. Sallenger Jr. 2006. Empirical parameterization of setup, swash, and runup. Coastal Based on an analysis of hourly tide gage _data NOAA s Toke Point, WA | found that d.urmg the 20.15 .2016 winter sea.son —— = 23?;?:1%{@-:%&gr::sctzag:])wTtElif:Lsti{;?‘ﬁ;jrﬁguaﬁiithlguetw ith mid-beach sl P 0 P & i
Engineering (53) 7:573-588. (October 1 to March 31) the measured tide heights averaged +0.093 m above predicted; resulting in the beach being 1o coastal srosion with mid-beach slopes > 3%.
impact by an additional 1,239 hours (51 days) with water levels above predicted levels. Prior to calculating the : : v
Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan. 2009 Digital Shoreline Analysis System (DSAS) version 4.0 — An ArcGIS horizontal run-up for each transect this El Nino induced elevation anoma|y was added to the calculated vertical run-up. - T — mes i D SAS ::f/':: A
extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. *updated for version 4.3. < : '7’ G I s @ ws DOT




	Actual vs. Predicted El Niño Induced Erosion Scarp Locations in northwest Oregon and southwest Washington

